安娜·德明(Anna Demming)透露了科学家,他发明了为美国卫星进入轨道的动力的燃料,但几乎没有记录下来的成就。

On 4 October 1957 the Soviet Union launched Sputnik. The world’s first ever satellite orbited the Earth for 21 days, singing its success with a beeping signal that anyone on the planet could tune into. Within less than a month Sputnik 2 launched, further extending the Soviets’ lead on the rest of the world in aerospace technology. For the US, meanwhile, orbital space rockets remained out of reach – their rocket technology programme had been primarily focused on military missiles.

Sputnik proved so significant in the parading of technological might during the cold war that many felt the US’s reputation as a technological superpower would never recover. When the US Explorer 1 successfully soared into orbit on 31 January 1958, it was the success story the country needed, salvaging the credibility of US science and engineering and giving it a footing in the space race. Yet the woman who invented the rocket fuel hydyne, which gave the converted missile the extra power needed to reach orbit, remains shrouded in obscurity.

Mary Sherman Morgan’s family would remember her as a ‘homebody’, rooted to the dining room table, often mumbling to herself irritably, with a coffee, cigarette, deck of cards for solitaire and an outdoor lifestyle magazine – often the inspiration for the next annual camping holiday. She was always sharp, but rewind to the days before her retirement ‘to raise a family’ and Morgan’s story reveals a tenacity of intellect and brilliance of mind that helped elevate US aerospace aspirations to new heights.

She intentionally eschewed the fame she could have had, calling security when a reporter showed up

摩根出生于北达科他州雷的一个大型贫穷的农户。她的日子被埋葬在家庭和农家杂货中,以至于她的父母直到9岁时才送她上学,到那时社会服务已经到来,威胁着她的父母被捕。在教育方面蓬勃发展,摩根获得了俄亥俄州桑达斯基一所谦虚的大学的奖学金,以阅读化学反应,但由于有助于为战争努力做出贡献并解决自己的解散财务,她的学位不完整,无法在附近的武器工厂工作。结果,当她在战后加入Rocketdyne(当时的北美航空)时,她不仅在处理针对她的女性的偏见,而且还应对自己的工程系中唯一没有大学学位的人。尽管如此,在那里,她发明了Hydyne,在几乎不可能的工作限制中取得了成就。她的任务是开发更强大的推进剂,该推进剂将为美国陆军的Redstone Rocket引擎赋予额外的力量,但没有改变发动机设计的任何方面。

“我认为这是一个相当的成就,”Bria说n Cantwell, an engineering professor at Stanford University in the US, whose work in rocket research ranges from testing the lunar module ascent engine for the Apollo mission back in the 1960s to pioneering a competitive hybrid solid–liquid rocket propellant currently in testing with scientists at Nasa. ‘I think her big accomplishment with this hydyne was to figure out how to keep the density comparable,’ Cantwell tellsmanbetx手机客户端3.0, listing several other chemical requirements the fuel had to meet while increasing the specific impulse with which it boosted the rocket. He highlights the issue of managing temperature, which was a greater challenge in the 1950s when rockets were built primarily from steel and consequently more prone to burning than today’s high-temperature nickel alloys and accompanying sophisticated cooling systems. The engine Morgan was tasked to get into orbit was ‘regeneratively cooled’ by circulating the fuel over the engine and nozzle, so the fuel needed to be an effective coolant as well.

In view of all the interlocking requirements, rockets and their propellants are generally designed in tandem. So why was Morgan ‘set up to fail’ as her colleagues would have seen it by being commissioned to retrofit a fuel to a rocket that would not only meet operational requirements but improve the rocket’s performance?

The US had already landed a significant asset in rocket science in Werner von Braun. Von Braun had been responsible for developing V2 missiles capable of covering distances of over 300km for the Nazis during the second world war. His expertise put him in a vulnerable position at the end of the war, when the Nazis were keen to obliterate any intelligence that could pose an advantage to the enemy. To his good fortune the US recognized his value and set him to work on extending the performance of their missile technology. Since boyhood von Braun had harboured dreams of conquering space and his best chance for reaching orbit was his Jupiter C rocket with its A-7 engine, adapted from the V2. The engine ran on a mixture of ethanol and water as the fuel and liquid oxygen (known as lox) as the oxidizer, but although powerful, even the expertise of von Braun and his team could only get enough specific impulse from the engine propellant to get it 93.1% of the way to orbit. Although focused on arms applications the US military were sufficiently interested to turn to North American Aviation, where Morgan’s reputation for complex theoretical calculations landed her the ‘poisoned chalice’ of finding a better propellant for the rocket. Following the launch of Sputnik, the urgency of the commission intensified.

尽管Cantwell描述了她被设置为“通过所有可用推进剂进行搜索”的任务,但他补充说,可用的燃料和氧化剂的清单非常有限。自早期空间任务以来,在过去60年中,火箭推进剂的变化很小,除了推动更多“绿色”技术 - 推进剂的化学反应没有改变。摩根将注意力集中在燃料方面,这一策略可能反对她的主管的建议,尽管他仍然很高兴在她赢得胜利的组合时很乐意获得赞誉。

It soon became clear that there was no ‘off-the-shelf’ fuel that would work alongside the liquid oxygen to give the A-7 more power, so Morgan started looking for compounds she could mix with unsymmetrical dimethyl hydrazine (UDMH) to increase both its density as well as its performance. Pure hydrazine is a nitrogen-based fuel that packs a powerful punch but is limited by its relatively high freezing point at around 2°C. Conveniently for Morgan, the Soviets had already devised UH with comparable power but a lower freezing point. However, the density would not work with the fuel tank capacity of the A-7. Morgan hit on diethylenetriamine (DETA), which is miscible with UDMH but has a higher density. Morgan had the quirky notion of naming the star performing 60:40 mix of UDMH and DETA ‘bagel’ so the propellant would be known as ‘bagel and lox’, the more sober-minded military overruled and named it hydyne.

The press coverage of Explorer 1 from the time is rich with photographs of von Braun, who was widely celebrated as the inventor of the rocket that launched the first US satellite. But although his rocket would never have got there without Morgan’s fuel, even among aerospace specialists, almost no-one has heard of her. Part of that might be down to the confidentiality surrounding the project. The secrecy of the second world war carried over to the cold war in the 1950s, as tensions mounted and the culture of McCarthyism heightened fears. Yet that hardly dimmed the limelight around von Braun’s contributions.

正如许多认识她作证的人一样,摩根强烈保护了她的隐私。‘她故意避开了自己本来可以的名声,当Lifemagazine reporter showed up after the Explorer I success to interview her for a feature article on her accomplishment,’ recalls her son and biographer George Morgan, who has been on a mission since his mother’s death in 2004 to undo her disappearing act from the annals of history. His stage playRocket Girl关于他母亲的一生于2008年在加州理工学院(Caltech)首映,他的传记于2013年出版。

工程师是媒体眼中的诺言

尽管他对火箭小时候的热情,他仍然对母亲的成就保持在黑暗中,直到14岁左右,当时他的父亲(也曾在北美航空工作)对对话发表了副手的评论。他回忆说:“你知道,母亲发明了发射美国第一个卫星的火箭燃料,对吗?”实际上,他的母亲非常擅长保守孩子的秘密,以至于直到她去世后不久才出现了他们在战争期间出生的同父异母姐姐。多亏了摩根的保密和北美航空的惨淡记录,当时乔治·D·摩根(George D Morgan)提交了itu告Los Angeles Times,他们拒绝打印它。根本没有足够的文档来支持索赔。

There was also the obvious issue of gender prejudices at the time (who would want to attribute America’s space glory to a woman?), but George Morgan cites a fourth contributing factor. ‘The space age stories mostly revolve around astronauts and a few leaders like Gene Krantz and Wernher von Braun. Engineers are nobodies in the eyes of the media,’ he tellsmanbetx手机客户端3.0。‘For example, you know a lot about Elon Musk, but how much do you know about his lead rocket engineer, Tom Mueller?’

Hydyne was not used for future rockets, an omission less remarkable when you consider how knotty is the mesh of extraneous circumstances each rocket project has to meet. Yet its role in the Explorer 1 launch set the stage for a dazzling era of US space missions. As such far from disappearing without a trace Morgan leaves behind a legacy that should inspire generations of girls and boys for years to come.

Anna Demming is a science writer based in Bristol, UK